
Tattoo Recognition Technology - Evaluation (Tatt-E)

	 	
NIST Concept and Evaluation Plan Page 1 of 28

		

 1

 2

 3

 4

 5

 6
 7

Tattoo Recognition Technology - Evaluation (Tatt-E) 8

A Public Evaluation of Tattoo Recognition Algorithms 9

 10

Concept, Evaluation Plan, and API 11

Version 0.1 12

 13

Mei Ngan and Patrick Grother 14

Contact via tatt-e@nist.gov 15

September 27, 2016

 16

 17

 18

!

Tatt

Tattoo Recognition Technology - Evaluation (Tatt-E)

	 	
NIST Concept and Evaluation Plan Page 2 of 28

		

Provisional Timeline of the Tatt-E Activity 19

API Development September 26, 2016 Draft evaluation plan available for public comments
November 30, 2016 Final evaluation plan published

Phase 1

December 1, 2016 Participation starts: Algorithms may be sent to NIST
February 14, 2017 Last day for submission of algorithms to Phase 1
March 28, 2017 Interim results released to Phase 1 participants

Phase 2

May 15, 2017 Last day for submission of algorithms to Phase 2
June 26, 2017 Interim results released to Phase 2 participants

Phase 3

August 31, 2017 Last day for submission of algorithms to Phase 3
Q4 2017 Release of final public report

 20

 21

 22

Acknowledgements 23

The organizers would like to thank the sponsor of this activity, the Federal Bureau of Investigation (FBI) 24

Biometric Center of Excellence (BCOE) for initiating and progressing this work. 25

 26

Contact Information 27

Email: tatt-e@nist.gov 28

Tatt-E Website: 29

https://www.nist.gov/programs-projects/tattoo-recognition-technology-evaluation-tatt-e 30

31

Tattoo Recognition Technology - Evaluation (Tatt-E)

	 	
NIST Concept and Evaluation Plan Page 3 of 28

		

Table of Contents 32

1. Tatt-E ... 4 33

1.1 Background .. 4 34

1.2 The Tattoo Recognition Technology Program ... 4 35

1.3 Scope ... 5 36

1.4 Audience .. 5 37

1.5 Training Data ... 5 38

1.6 Offline Testing .. 5 39

1.7 Phased Testing .. 5 40

1.8 Interim reports .. 6 41

1.9 Final reports ... 6 42
1.10 Application scenarios ... 6 43

1.11 Rules for participation .. 7 44

1.12 Number and schedule of submissions ... 7 45

1.13 Core accuracy metrics ... 7 46

1.14 Reporting template size ... 7 47

1.15 Reporting computational efficiency .. 8 48

1.16 Exploring the accuracy-speed trade-space ... 8 49

1.17 Hardware specification .. 8 50

1.18 Operating system, compilation, and linking environment .. 8 51

1.19 Runtime behavior ... 10 52

1.20 Single-thread Requirement .. 10 53
1.21 Time limits .. 10 54

1.22 Ground truth integrity ... 11 55

2. Data structures supporting the API ... 12 56

2.1 Data structures .. 12 57

2.2 File structures for enrolled template collection .. 15 58

3. API Specification ... 15 59

3.1 Namespace .. 16 60

3.2 Overview .. 16 61

3.3 Detection and Localization (Class D) ... 16 62

3.4 Identification (Class I) .. 18 63

Annex A Submissions of Implementations to Tatt-E ... 23 64

A.1 Submission of implementations to NIST .. 23 65
A.2 How to participate ... 23 66

A.3 Implementation validation ... 24 67

Application and Agreement to Participate in the Tattoo Recognition Technology – Evaluation (Tatt-E) 25 68

 69

List of Tables 70

Table 1 – Subtests supported under the Tatt-E activity .. 6 71

Table 2 – Tatt-E classes of participation ... 7 72

Table 3 – Cumulative total number of algorithms ... 7 73

Table 4 – Implementation library filename convention ... 9 74

Table 5 – Processing time limits in seconds, per 640 x 480 image .. 10 75

Table 6 – Enrollment dataset template manifest .. 15 76

Table 7 – Procedural overview of the detection and localization test ... 16 77

Table 8 – Procedural overview of the identification test ... 18 78

 79

Tattoo Recognition Technology - Evaluation (Tatt-E)

	 	
NIST Concept and Evaluation Plan Page 4 of 28

		

1. Tatt-E 80

1.1 Background 81

Tattoos have been used for many years to assist law enforcement in the identification of criminals and victims 82

and for investigative research purposes. Historically, law enforcement agencies have followed the ANSI/NIST-83

ITL 1-20111 standard to collect and assign keyword labels to tattoos. This keyword labeling approach comes 84

with drawbacks, which include the limited number of ANSI/NIST standard class labels to able describe the 85

increasing variety of new tattoo designs, the need for multiple keywords to sufficiently describe some tattoos, 86

and subjectivity in human annotation as the same tattoo can be labeled differently by examiners. As such, the 87

shortcomings of keyword-based tattoo image retrieval have driven the need for automated image-based tattoo 88
recognition capabilities. 89

1.2 The Tattoo Recognition Technology Program 90

The Tattoo Recognition Technology Program was initiated by NIST to support an operational need for image-91

based tattoo recognition to support law enforcement applications. The program provides quantitative support for 92

tattoo recognition development and best practice guidelines. Program activities to date are summarized in 93

Figure 1. 94

 95

Figure 1 – Activities under the Tattoo Recognition Technology Program 96

 97

• Tatt-C was an initial research challenge that provided operational data and use cases to the research 98

community to advance research and development into automated image-based tattoo technologies and 99
to assess the state-of-the-art. NIST hosted a culminating industry workshop and published a public 100

report on the outcomes and recommendations from the Tatt-C activity. Please visit 101

https://www.nist.gov/programs-projects/tattoo-recognition-technology-challenge-tatt-c for more 102

information. 103

 104

• Tatt-BP provides best practice guidance material for the proper collection of tattoo images to support 105

image-based tattoo recognition. Recognition failure in Tatt-C was often related to the consistency and 106

quality of image capture, and Tatt-BP aimed to provide guidelines on improving the quality of tattoo 107

images collected operationally. Please visit https://www.nist.gov/itl/iad/image-group/tattoo-recognition-108
technology-best-practices for more information. 109

 110

• Tatt-E is a sequestered evaluation intended to assess tattoo recognition algorithm accuracy and run-111

time performance over a large-scale of operational data. The participation details of Tatt-E are 112

established in this document, also available for download at https://www.nist.gov/programs-113

projects/tattoo-recognition-technology-evaluation-tatt-e. 114

																																																																				
1 The latest version of the ANSI/NIST-ITL 1-2011 standard is available at https://www.nist.gov/programs-projects/ansinist-itl-
standard.

Tattoo Recognition Technology Program

Tatt-C
“Open-book” challenge with

provided dataset to engage research
community to advance image-based

tattoo matching technology

Tatt-BP
Best practice guidelines and

training material for the collection
of tattoo images

Tatt-E
Large-scale sequestered

evaluation of tattoo recognition
algorithms

2014 - 2015 2015 - 2016 2016 - 2017

“Open-book” test with provided
dataset

Best Practice Documents Sequestered Test

Future Activities

TBD

TBD

Comments and
discussion welcome via

tattoo@nist.gov

Tattoo Recognition Technology - Evaluation (Tatt-E)

	 	
NIST Concept and Evaluation Plan Page 5 of 28

		

 115

1.3 Scope 116

The Tattoo Recognition Technology – Evaluation (Tatt-E) is being conducted to assess and measure the 117

capability of systems to perform automated image-based tattoo recognition. Both comparative and absolute 118

accuracy measures are of interest, given the goals to determine which algorithms are most effective and viable 119

for the following primary operational use-cases: 120

 121

• Tattoo/Region of Interest Identification – matching different instances of the same tattoo image from the 122

same subject over time. This includes matching with entire and/or partial regions of a tattoo. 123

• Tattoo detection/localization – determining whether an image contains a tattoo and if so, segmentation 124
of the tattoo. 125

• Sketches – matching sketches to tattoo images. 126

 127

Out of scope: Areas that are out of scope for this evaluation and will not be studied include: matching of tattoos 128

based on thematically similar content as the definition of “similarity” is ill-defined; tattoo recognition in video. 129

 130

This document establishes a concept of operations and an application programming interface (API) for 131

evaluation of tattoo recognition implementations submitted to NIST’s Tattoo Recognition Technology – 132

Evaluation. See https://www.nist.gov/programs-projects/tattoo-recognition-technology-evaluation-tatt-e for all 133
Tatt-E documentation. 134

1.4 Audience 135

Any person or organizations with capabilities in any of the following areas are invited to participation in the Tatt-136

E test. 137

• Tattoo matching implementations. 138

• Tattoo detection and localization algorithms. 139

• Algorithms with an ability to match sketches to tattoos. 140

Participants will need to implement the API defined in this document. Participation is open worldwide. There is 141

no charge for participation. NIST encourages submission of experimental prototypes as well as those that could 142

be readily made operational. 143

1.5 Training Data 144

None of the test data can be provided to participants. Instead prospective participants should leverage public 145

domain and proprietary datasets as available. The Tatt-C dataset, which is provided by the FBI, is a very 146

suitable tattoo corpus for development and training that has been made available to qualified developers - 147

please contact tatt-e@nist.gov for more details. 148

1.6 Offline Testing 149

While Tatt-E is intended as much as possible to mimic operational reality, this remains an offline test executed 150
on databases of images. The intent is to assess the core algorithmic capability of tattoo detection, localization, 151

and recognition algorithms. Offline testing is attractive because it allows uniform, fair, repeatable, and efficient 152

evaluation of the underlying technologies. Testing of implementations under a fixed API allows for a detailed set 153

of performance related parameters to be measured. 154

1.7 Phased Testing 155

To support development, Tatt-E will run in multiple phases. The final phase will result in the release of public 156

reports. Providers should not submit revised algorithms to NIST until NIST provides results for the prior phase. 157

For the schedule and number of algorithms of each class that may be submitted for each class, see section 158

1.12. 159

Tattoo Recognition Technology - Evaluation (Tatt-E)

	 	
NIST Concept and Evaluation Plan Page 6 of 28

		

1.8 Interim reports 160

The performance of each implementation in phase 1 and 2 will be reported in a "report card". This will be 161

provided to the participant. It is intended to facilitate research and development, not for marketing. Report 162

cards will: be machine generated (i.e. scripted); be provided to participants with coded identification of their 163

implementation; include timing, accuracy, and other performance results; include results from other 164

implementations, but will not identify the other providers; be expanded and modified as revised implementations 165

are tested and as analyses are implemented; be produced independently of the status of other providers’ 166
implementations; be regenerated on-the-fly, usually whenever any implementation completes testing, or when 167

new analysis is added. 168

NIST does not intend to release these report cards publicly. NIST may release such information to the U.S. 169

Government test sponsors; NIST will request that agencies not release this content. 170

1.9 Final reports 171

NIST will publish one or more final public reports. NIST may also publish: additional supplementary reports 172

(typically as numbered NIST Interagency Reports); in academic journal articles; in conferences and workshops 173

(typically PowerPoint). 174

Our intention is that the final test reports will publish results for the best-performing implementation from each 175
participant. Because “best” is underdefined (accuracy vs. time, for example), the published reports may include 176

results for other implementations. The intention is to report results for the most capable implementations (see 177

section 1.13 on metrics). Other results may be included (e.g. in appendices) to show, for example, illustration of 178

progress or tradeoffs. 179

IMPORTANT: All Phase 3 results will be attributed to the providers, publicly associating performance with 180

organization name. 181

1.10 Application scenarios 182

As described in Table 1, the test is intended to represent: 183

• Use of tattoo recognition technologies in search applications in which the enrolled dataset could contain 184
images in the hundreds of thousands. 185

• Tattoo detection and localization with zero or more tattoos in the sample. 186

	187

Table 1 – Subtests supported under the Tatt-E activity 188

Class label D I
1. Aspect Detection and Localization 1:N Search
2. Enrollment dataset None, application to single images N enrolled subjects
3. Prior NIST test references For detection task, see Detection

in Tatt-C 20152
See Tattoo Identification, Region of
Interest, and Mixed Media matching
from Tatt-C 20152

4. Example application Database construction and
maintenance of large amounts of
unlabeled, comingled data, e.g.
given a pile of seized media, 1.
Detect whether/which images
contain tattoos and 2. Segment
tattoos as pre-processing step for
search against a database.

Open-set search of a tattoo/sketch
image against a central tattoo
database, e.g. a search of a tattoo,
parts of a tattoo, or a sketch of a
tattoo against a tattoo database of
known criminals.

5. Number of images Variable Enrollment gallery: Up to O(105)
6. Number of images per

individual
N/A Variable: one or more still tattoo

images
7. Enrollment image types Tattoo and non-tattoo images Tattoos
8. Probe image types N/A Tattoos and sketches

																																																																				
2 See the Tatt-C test report: NIST Interagency Report 8078, linked from https://www.nist.gov/programs-projects/tattoo-
recognition-technology-challenge-tatt-c

Tattoo Recognition Technology - Evaluation (Tatt-E)

	 	
NIST Concept and Evaluation Plan Page 7 of 28

		

 189

1.11 Rules for participation 190

There is no charge to participate in Tatt-E. A participant must properly follow, complete, and submit the 191

Participation Agreement contained in this document. This must be done once, after December 1, 2016. It is not 192

necessary to do this for each submitted software library. 193

• All participants shall submit at least one class D (detection and localization) algorithm. 194

• Class I (identification) algorithms may be submitted only if at least 1 class D algorithm is also submitted. 195

• All submissions shall implement exactly one of the functionalities defined in Table 2. A library shall not 196

implement the API of more than one class (separate libraries shall be submitted to participate in 197

separate participation classes). 198

Table 2 – Tatt-E classes of participation 199

Function Detection and Localization Identification
Class label D I
Co-requisite class None D
API requirements 3.3 3.4

 200

1.12 Number and schedule of submissions 201

The test is conducted in three phases, as scheduled on page 2. The maximum total (i.e. cumulative) number of 202

submissions is regulated in Table 3. Participation in Phase 1 is not required for algorithm submission in Phase 203

2. 204

Table 3 – Cumulative total number of algorithms 205

Phase 1 Total over Phases 1 + 2 Total over Phases 1 + 2 + 3
All classes of participation 2 4 6 if at least 1 was successfully

executed by end of Phase 1
2 otherwise

1.13 Core accuracy metrics 206

For identification testing, the test will target open-universe applications such as searching tattoo databases of 207

known criminals (where the subject may or may not exist in the gallery) and closed-set tasks where subject is 208

known to be in the database, e.g. in prison or corrections environments. Both score-based and rank-based 209

metrics will be considered. Rank-based metrics are appropriate for one-to-many applications that employ 210

human examiners to adjudicate candidate lists. Score based metrics are appropriate for cases where 211

transaction volumes are too high for human adjudication or when false alarm rates must otherwise be low. 212

Metrics include, false positive and negative identification rate (FPIR and FNIR) and cumulative match 213
characteristic that can depend on threshold and rank. 214

For detection and localization, assessments of overlap between detected and examiner-determined tattoo area 215

will be considered along with score-based metrics including false positive and negative detection rate. 216

1.14 Reporting template size 217

Because template size is influential on storage requirements and computational efficiency, this API supports 218

measurement of template size. NIST will report statistics on the actual sizes of templates produced by tattoo 219

recognition implementations submitted to Tatt-E. NIST may also report statistics on runtime memory and other 220

compute-performance characteristics. 221

Tattoo Recognition Technology - Evaluation (Tatt-E)

	 	
NIST Concept and Evaluation Plan Page 8 of 28

		

1.15 Reporting computational efficiency 222

As with other tests, NIST will compute and report accuracy. In addition, NIST will also report timing statistics for 223

all core functions of the submitted API implementations. This includes feature extraction and 1:N matching. For 224

an example of how efficiency might be reported, see the final report of the FRVT 2013 test3. 225

1.16 Exploring the accuracy-speed trade-space 226

NIST will explore the accuracy vs. speed tradeoff for tattoo recognition algorithms running on a fixed platform. 227

NIST will report both accuracy and speed of the implementations tested. While NIST cannot force submission 228

of "fast vs. slow" variants, participants may choose to submit variants on some other axis (e.g. "experimental vs. 229
mature") implementations. 230

1.17 Hardware specification 231

NIST intends to support highly optimized algorithms by specifying the runtime hardware. There are several 232

types of computers that may be used in the testing. The following list gives some details about possible 233

compute architectures: 234

• Dual Intel Xeon X5680 3.3 GHz CPUs (6 cores each) 235

• Dual Intel Xeon X7560 2.3 GHz CPUs (8 cores each) 236

• Dual Intel Xeon E5-2695 3.3 GHz CPUs (14 cores each; 56 logical CPUs total) with Dual NVIDIA Tesla 237

K40 GPUs 238

Each CPU has 512K cache. The bus runs at 667 Mhz. The main memory is 192 GB Memory as 24 8GB 239

modules. We anticipate that 16 processes can be run without time slicing, though NIST will handle all 240

multiprocessing work fork. Participant-initiated multiprocessing is not permitted. 241

NIST is requiring use of 64-bit implementations throughout. This will support large memory allocation to support 242

1:N identification tasks. Note that while the API allows read access of the disk during the 1:N search, the disk is 243

relatively slow, and I/O will be included in your run time. 244

All GPU-enabled machines will be running CUDA version 7.5. cuDNN v5 for CUDA 7.5 will also be installed on 245
these machines. Implementations that use GPUs will only be run on GPU-enabled machines. 246

1.18 Operating system, compilation, and linking environment 247

The operating system that the submitted implementations shall run on will be released as a downloadable file 248
accessible from http://nigos.nist.gov:8080/evaluations/CentOS-7-x86_64-Everything-1511.iso, which is the 64-249

bit version of CentOS 7.2 running Linux kernel 3.10.0. 250

For this test, Windows machines will not be used. Windows-compiled libraries are not permitted. All software 251

must run under CentOS 7.2. 252

NIST will link the provided library file(s) to our C++ language test drivers. Participants are required to provide 253
their library in a format that is dynamically-linkable using the C++11 compiler, g++ version 4.8.5. 254

A typical link line might be 255

g++ -std=c++11 -I. -Wall -m64 -o tatte tatte.cpp -L. –ltatte_Company_D_07 256

The Standard C++ library should be used for development. The prototypes from this document will be written to 257

a file "tatte.h" which will be included via 258

#include <tatte.h>

The header files will be made available to implementers via https://github.com/usnistgov/tattoo. 259

All compilation and testing will be performed on x86_64 platforms. Thus, participants are strongly advised to 260

verify library-level compatibility with g++ (on an equivalent platform) prior to submitting their software to NIST to 261

avoid linkage problems later on (e.g. symbol name and calling convention mismatches, incorrect binary file 262

formats, etc.). 263

																																																																				
3 See the FRVT 2013 test report: NIST Interagency Report 8009, linked from http://face.nist.gov/frvt

Tattoo Recognition Technology - Evaluation (Tatt-E)

	 	
NIST Concept and Evaluation Plan Page 9 of 28

		

Any and all dependencies on external dynamic/shared libraries not provided by CentOS 7.2 as part of the built-264

in “development” package must be provided as a part of the submission to NIST. 265

1.18.1 Library and Platform Requirements 266

Participants shall provide NIST with binary code only (i.e. no source code). The implementation should be 267

submitted in the form of a dynamically-linked library file. 268

The core library shall be named according to Table 4. Additional dynamic libraries may be submitted that 269

support this “core” library file (i.e. the “core” library file may have dependencies implemented in these other 270

libraries). 271

Intel Integrated Performance Primitives (IPP) ® libraries are permitted if they are delivered as a part of the 272

developer-supplied library package. It is the provider’s responsibility to establish proper licensing of all libraries. 273

The use of IPP libraries shall not prevent run on CPUs that do not support IPP. Please take note that some IPP 274

functions are multithreaded and threaded implementations are prohibited. 275

NIST will report the size of the supplied libraries. 276

 277

Table 4 – Implementation library filename convention 278

Form libTattE_provider_class_sequence.ending
Underscore
delimited parts of
the filename

libTattE provider class sequence ending

Description First part of the
name, required to
be this.

Single word name
of the main provider
EXAMPLE: Choice

Function classes
supported in Table
2.
EXAMPLE: D

A two digit decimal
identifier to start at 00
and increment by 1 every
time a library is sent to
NIST. EXAMPLE: 07

.so

Example libTattE_Choice_D_07.so
 279

1.18.2 Configuration and developer-defined data 280

The implementation under test may be supplied with configuration files and supporting data files. NIST will 281

report the size of the supplied configuration files. 282

1.18.3 Submission folder hierarchy 283

Participant submissions should contain the following folders at the top level 284

• lib/ - contains all participant-supplied software libraries 285

• config/ - contains all configuration and developer-defined data 286

• doc/ - contains any participant-provided documentation regarding the submission 287

• validation/ - contains validation output 288

1.18.4 Installation and Usage 289

The implementation shall be installable using simple file copy methods. It shall not require the use of a separate 290

installation program and shall be executable on any number of machines without requiring additional machine-291

specific license control procedures or activation. The implementation shall not use nor enforce any usage 292

controls or limits based on licenses, number of executions, presence of temporary files, etc. It shall remain 293

operable with no expiration date. 294

Hardware (e.g. USB) activation dongles are not acceptable. 295

1.18.5 Modes of operation 296

Implementations shall not require NIST to switch “modes” of operation or algorithm parameters. For example, 297

the use of two different feature extractors must either operate automatically or be split across two separate 298

library submissions. 299

Tattoo Recognition Technology - Evaluation (Tatt-E)

	 	
NIST Concept and Evaluation Plan Page 10 of 28
	

1.19 Runtime behavior 300

1.19.1 Interactive behavior, stdout, logging 301

The implementation will be tested in non-interactive “batch” mode (i.e. without terminal support). Thus, the 302

submitted library shall: 303

− Not use any interactive functions such as graphical user interface (GUI) calls, or any other calls, which 304

require terminal interaction e.g. reads from “standard input”. 305

− Run quietly, i.e. it should not write messages to "standard error" and shall not write to “standard output”. 306

− Only if requested by NIST for debugging, include a logging facility in which debugging messages are 307

written to a log file whose name includes the provider and library identifiers and the process PID. 308

Please do not enable this by default. 309

1.19.2 Exception Handling 310

The application should include error/exception handling so that in the case of a fatal error, the return code is still 311

provided to the calling application. 312

1.19.3 External communication 313

Processes running on NIST hosts shall not affect the runtime environment in any manner, except for memory 314

allocation and release. Implementations shall not write any data to external resource (e.g. server, file, 315

connection, or other process), nor read from such. If detected, NIST will take appropriate steps, including but not 316

limited to, cessation of evaluation of all implementations from the supplier, notification to the provider, and 317

documentation of the activity in published reports. 318

1.19.4 Stateless behavior 319

All components in this test shall be stateless. Thus, all functions should give identical output, for a given input, 320

independent of the runtime history. NIST will institute appropriate tests to detect stateful behavior. If detected, 321

NIST will take appropriate steps, including but not limited to, cessation of evaluation of all implementations from 322

the supplier, notification to the provider, and documentation of the activity in published reports. 323

1.20 Single-thread Requirement 324

Implementations must run in single-threaded mode, because NIST will parallelize the test by dividing the 325
workload across many cores and many machines simultaneously. 326

1.21 Time limits 327

The elemental functions of the implementations shall execute under the time constraints of Table 5. These time 328

limits apply to the function call invocations defined in Table 5. Assuming the times are random variables, NIST 329

cannot regulate the maximum value, so the time limits are 90-th percentiles. This means that 90% of all 330

operations should take less than the identified duration. 331

The time limits apply per image. When K tattoos images of a subject are present, the time limits shall be 332

increased by a factor K. 333

Table 5 – Processing time limits (1 core) in seconds, per 640 x 480 image 334

 D I
Function Detection and

Localization
1:N identification

Feature extraction for enrollment
and identification

5

5

Identification of one search
template against 100,000 single-
image tattoo records.

16

Enrollment finalization of 100,000
single-image tattoo records

720

Tattoo Recognition Technology - Evaluation (Tatt-E)

	 	
NIST Concept and Evaluation Plan Page 11 of 28
	

(including disk IO time)

1.22 Ground truth integrity 335

Some of the test data is derived from operational systems and may contain ground truth errors in which 336

― a single tattoo is present under two different identifiers, or 337

― two different tattoos are present under one identifier, or 338

― in which a tattoo is not present in the image. 339

If these errors are detected, they will be removed. NIST will use aberrant scores (high impostor scores, low 340

genuine scores) to detect such errors. This process will be imperfect, and residual errors are likely. For 341

comparative testing, identical datasets will be used and the presence of errors should give an additive increment 342

to all error rates. For very accurate implementations this will dominate the error rate. NIST intends to attach 343

appropriate caveats to the accuracy results. For prediction of operational performance, the presence of errors 344
gives incorrect estimates of performance. 345

 346

Tattoo Recognition Technology - Evaluation (Tatt-E)

	 	
NIST Concept and Evaluation Plan Page 12 of 28
	

2. Data structures supporting the API 347

2.1 Data structures 348

2.1.1 Overview 349

In this test, a tattoo is represented by K ≥ 1 two-dimensional tattoo images. 350

2.1.2 Data structures for encapsulating multiple images 351

Some of the proposed datasets includes K > 2 same tattoo images per person for some persons. This affords 352

the possibility to model a recognition scenario in which a new image of a tattoo is compared against all prior 353

images. Use of multiple images per person has been shown to elevate accuracy over a single image for other 354

biometric modalities. 355

For tattoo recognition in this test, NIST will enroll K ≥ 1 images for each unique tattoo. Both enrolled gallery and 356
probe samples may consist of multiple images such that a template is the result of applying feature extraction to 357

a set of K ≥ 1 images and then integrating information from them. An algorithm might fuse K feature sets into a 358

single model or might simply maintain them separately. In any case the resulting proprietary template is 359
contained in a contiguous block of data. All identification functions operate on such multi-image templates. 360

The number of images per unique tattoo will vary, and images may not be acquired uniformly over time. NIST 361

currently estimates that the number of images K will never exceed 100. For the Tatt-E API, K of the same tattoo 362

images of an individual are contained in data structure of Section 2.1.2.2. 363

2.1.2.1 TattE::Image Struct Reference 364

Struct representing a single image. 365

Public Member Functions 366

• Image () 367

• Image (uint16_t widthin, uint16_t heightin, uint8_t depthin, ImageType typein, std::shared_ptr<uint8_t> 368

datain) 369

Public Attributes 370

• uint16_t width 371

Number of pixels horizontally. 372

• uint16_t height 373

Number of pixels vertically. 374

• uint16_t depth 375

Number of bits per pixel. Legal values are 8 and 24. 376

• ImageType imageType 377

Label describing the type of image. 378

• std::shared_ptr<uint8_t> data 379
Managed pointer to raster scanned data. Either RGB color or intensity. If image_depth == 24 380

this points to 3WH bytes RGBRGBRGB... If image_depth == 8 this points to WH bytes IIIIIII. 381

2.1.2.2 TattE::MultiTattoo Typedef Reference 382

typedef std::vector< Image > MultiTattoo 383

Data structure representing a set of the same tattoo images from a single person. 384

2.1.3 Data Structure for detected tattoo 385

Implementations shall return bounding box coordinates of each detected tattoo in an image. 386

2.1.3.1 TattE::BoundingBox Struct Reference 387

Structure for bounding box around a detected tattoo. 388

Tattoo Recognition Technology - Evaluation (Tatt-E)

	 	
NIST Concept and Evaluation Plan Page 13 of 28
	

Public Member Functions 389

• BoundingBox () 390

• BoundingBox (uint16_t xin, uint16_t yin, uint16_t widthin, uint16_t heightin, double confin) 391

Public Attributes 392

• uint16_t x 393

X-coordinate of top-left corner of bounding box around tattoo. 394

• uint16_t y 395

Y-coordinate of top-left corner of bounding box around tattoo. 396

• uint16_t width 397
Width, in pixels, of bounding box around tattoo. 398

• uint16_t height 399

Height, in pixels, of bounding box around tattoo. 400

• double confidence 401

Certainty that this region contains a tattoo. This value shall be on [0, 1]. The higher the value, 402
the more certain. 403

2.1.4 Class for representing a tattoo in a MultiTattoo 404

2.1.4.1 TattE::TattooRep Class Reference 405

Class representing a tattoo or sketch template from image(s) 406

Public Member Functions 407

• TattooRep () 408
Default Constructor. 409

• void addBoundingBox (const BoundingBox &bb) 410

This function should be used to add bounding box entries for each input image provided to the 411

implementation for template generation. If there are 4 images in the MultiTattoo vector, then the 412

size of boundingBoxes shall be 4. boundingBoxes[i] is associated with MultiTattoo[i]. 413

• std::shared_ptr< uint8_t > resizeTemplate (uint64_t size) 414
This function takes a size parameter and allocates memory of size and returns a managed 415

pointer to the newly allocated memory for implementation manipulation. This class will take care 416

of all memory allocation and de-allocation of its own memory. The implementation shall not de-417

allocate memory created by this class. 418

• const std::shared_ptr< uint8_t > getTattooTemplatePtr () const 419

• uint64_t getTemplateSize () const 420
This function returns the size of the template data. 421

• std::vector< BoundingBox > getBoundingBoxes () const 422

This function returns the bounding boxes for detected tattoos associated with the input images. 423

Private Attributes 424

• std::shared_ptr< uint8_t > tattooTemplate 425

Proprietary template data representing a tattoo in images(s) 426

• uint64_t templateSize 427

Size of template. 428

• std::vector< BoundingBox > boundingBoxes 429
Data structure for capturing bounding boxes around the detected tattoo(s) 430

2.1.5 Data structure for result of an identification search 431

All identification searches shall return a candidate list of a NIST-specified length. The list shall be sorted with 432
the most similar matching entries listed first with lowest rank. 433

Tattoo Recognition Technology - Evaluation (Tatt-E)

	 	
NIST Concept and Evaluation Plan Page 14 of 28
	

2.1.5.1 TattE::Candidate Struct Reference 434

Data structure for result of an identification search. 435

Public Member Functions 436

• Candidate () 437

• Candidate (bool assignedin, std::string idin, double scorein) 438

Public Attributes 439

• bool isAssigned 440

If the candidate is valid, this should be set to true. If the candidate computation failed, this 441

should be set to false. 442

• std::string templateId 443

The template ID from the enrollment database manifest. 444

• double similarityScore 445
Measure of similarity between the identification template and the enrolled candidate. Higher 446

scores mean more likelihood that the samples are of the same person. An algorithm is free to 447

assign any value to a candidate. The distribution of values will have an impact on the 448

appearance of a plot of false-negative and false-positive identification rates. 449

2.1.6 Data Structure for return value of API function calls 450

2.1.6.1 TattE::ReturnStatus Struct Reference 451

A structure to contain information about the success/failure by the software under test. An object of this class 452

allows the software to return some information from a function call. The string within this object can be optionally 453

set to provide more information for debugging etc. The status code will be set by the function to Success on 454

success, or one of the other codes on failure. 455

Public Member Functions 456

• ReturnStatus () 457

• ReturnStatus (const TattE::ReturnCode code, const std::string info="") 458
Create a ReturnStatus object. 459

Public Attributes 460

• TattE::ReturnCode code 461
Return status code. 462

• std::string info 463

Optional information string. 464

2.1.7 Enumeration Type Documentation 465

2.1.7.1 enum TattE::ReturnCode[strong] 466

Return codes for the functions specified by this API. 467

Enumerator 468

Success Success 469

ConfigError Error reading configuration files 470

ImageTypeNotSupported Image type, e.g., sketches, is not supported by the implementation 471

RefuseInput Elective refusal to process the input 472

ExtractError Involuntary failure to process the image 473

ParseError Cannot parse the input data 474

TemplateCreationError Elective refusal to produce a template 475

EnrollDirError An operation on the enrollment directory failed (e.g. permission, space) 476

Tattoo Recognition Technology - Evaluation (Tatt-E)

	 	
NIST Concept and Evaluation Plan Page 15 of 28
	

NumDataError The implementation cannot support the number of input images 477

TemplateFormatError One or more template files are in an incorrect format or defective 478

InputLocationError Cannot locate the input data - the input files or names seem incorrect 479

VendorError Vendor-defined failure 480

2.1.7.2 enum TattE::TemplateRole[strong] 481

Labels describing the type/role of the template to be generated (provided as input to template generation) 482

Enumerator 483

Enrollment Enrollment template used to enroll into gallery 484

Identification Identification template used for search 485

2.1.7.3 enum TattE::ImageType[strong] 486

Labels describing the image type. 487

Enumerator 488

Tattoo Tattoo image 489

Sketch Sketch of tattoo 490

 491

2.2 File structures for enrolled template collection 492

An implementation converts a MultiTattoo into a template, using, for example the createTemplate() function of 493

section 3.4.1.5.2. To support the Class I identification functions of Table 2, NIST will concatenate enrollment 494

templates into a single large file, the EDB (for enrollment database). The EDB is a simple binary concatenation 495

of proprietary templates. There is no header. There are no delimiters. The EDB may be hundreds of gigabytes 496
in length. 497

This file will be accompanied by a manifest; this is an ASCII text file documenting the contents of the EDB. The 498

manifest has the format shown as an example in Error! Reference source not found.. If the EDB contains N 499

templates, the manifest will contain N lines. The fields are space (ASCII decimal 32) delimited. There are three 500

fields. Strictly speaking, the third column is redundant. 501

Important: If a call to the template generation function fails, or does not return a template, NIST will include the 502

Template ID in the manifest with size 0. Implementations must handle this appropriately. 503

Table 6 – Enrollment dataset template manifest 504

Field name Template ID Template Length Position of first byte in
EDB

Datatype required std::string Unsigned decimal
integer

Unsigned decimal integer

Example lines of a manifest file
appear to the right. Lines 1, 2, 3
and N appear.

90201744 1024 0
Tattoo01 1536 1024
7456433 512 2560
...
Tattoo12 1024 307200000

 505
The EDB scheme avoids the file system overhead associated with storing millions of individual files. 506

 507

3. API Specification 508

The function prototypes from this document and any other supporting code will be provided in a "tatte.h" file 509

made available to implementers via https://github.com/usnistgov/tattoo. 510

Tattoo Recognition Technology - Evaluation (Tatt-E)

	 	
NIST Concept and Evaluation Plan Page 16 of 28
	

3.1 Namespace 511

All data structures and API interfaces/function calls will be declared in the TattE namespace. 512

3.2 Overview 513

This section describes separate APIs for the core tattoo applications described in section 1.10. All submissions 514
to Tatt-E shall implement the functions required by the rules for participation listed before Table 2. Tatt-E 515

participants shall implement the relevant C++ prototyped interfaces in this section. C++ was chosen in order to 516

make use of some object-oriented features. 517

3.3 Detection and Localization (Class D) 518

This section defines an API for algorithms that can solely perform tattoo detection and localization. The 519

detection task requires the implementation to detect whether an image contains a tattoo or not, and localization 520

requires identifying the location of the tattoo within the image. Given an image, an implementation should 521

• For detection, classify whether a tattoo was detected in the image or not and provide a real-valued 522

measure of detection confidence on [0,1], with 1 indicating absolute certainty that the image contains a 523
tattoo and 0 indicating absolute certainty that the image does not contain a tattoo. 524

• For localization, report location(s) of one or more tattoos on different body locations in the form of a 525

bounding box. 526

Table 7 – Procedural overview of the detection and localization test 527

P
ha

se

Name Description Performance Metrics to be
reported by NIST

D
et

ec
tio

n
an

d
Lo

ca
liz

at
io

n

Initialization initialize()
Give the implementation the name of a directory where any
provider-supplied configuration data will have been placed by
NIST. This location will otherwise be empty. The implementation
is permitted read-only access to the configuration directory.

Detection detectTattoo()
For each of N images, pass single images to the implementation
for tattoo detection. The implementation will set a boolean
indicating whether a tattoo was detected or not and a detection
certainty confidence score.

Multiple instances of the calling application may run
simultaneously or sequentially. These may be executing on
different computers.

Statistics of detection times.

Accuracy metrics.

The incidence of where the
implementation failed to
perform detection (non-
successful return code).

Localization localizeTattoos()
For each of N tattoo images, pass single images to the
implementation for tattoo localization. The implementation will
populate a vector with bounding boxes corresponding to the
tattoos detected from the input image.

Multiple instances of the calling application may run
simultaneously or sequentially. These may be executing on
different computers.

Statistics of the time needed
for this operation.

Accuracy metrics.

The incidence of where the
implementation failed to
perform localization.

 528

3.3.1 TattE::DetectAndLocalizeInterface Class Reference 529

The interface to Class D implementations. 530

3.3.1.1 Public Member Functions 531

• virtual ~DetectAndLocalizeInterface () 532

• virtual ReturnStatus initialize (const std::string &configurationLocation)=0 533

Tattoo Recognition Technology - Evaluation (Tatt-E)

	 	
NIST Concept and Evaluation Plan Page 17 of 28
	

This function initializes the implementation under test. It will be called by the NIST application 534

before any call to the functions detectTattoo and localizeTattoos(). 535

• virtual ReturnStatus detectTattoo (const Image &inputImage, bool &tattooDetected, double 536

&confidence)=0 537
This function takes an Image as input and indicates whether a tattoo was detected in the image 538

or not. 539

• virtual ReturnStatus localizeTattoos(const Image &inputImage, std::vector< BoundingBox > 540

&boundingBoxes)=0 541

This function takes an Image as input, and populates a vector of BoundingBox with the 542

number of tattoos detected on different body locations from the input image. 543

3.3.1.2 Static Public Member Functions 544

• static std::shared_ptr< DetectAndLocalizeInterface > getImplementation () 545

Factory method to return a managed pointer to the DetectAndLocalizeInterface 546

object. This function is implemented by the submitted library and must return a managed 547

pointer to the DetectAndLocalizeInterface object. 548

3.3.1.3 Detailed Description 549

The interface to Class D implementations. 550

The class D detection and localization software under test must implement the interface 551

DetectAndLocalizeInterface by subclassing this class and implementing each method specified therein. 552

3.3.1.4 Constructor & Destructor Documentation 553

• virtual TattE::DetectAndLocalizeInterface::DetectAndLocalizeInterface ()[inline], [virtual] 554

3.3.1.5 Member Function Documentation 555

3.3.1.5.1 virtual ReturnStatus TattE::DetectAndLocalizeInterface::initialize (const std::string & 556
configurationLocation)[pure virtual] 557

This function initializes the implementation under test. It will be called by the NIST application before any call to 558

the functions detectTattoo and localizeTattoos. 559

 560

Parameters: 561

in configurationLocation A read-only directory containing any developer-supplied configuration parameters or
run-time data. The name of this directory is assigned by NIST, not hardwired by the
provider. The names of the files in this directory are hardwired in the implementation
and are unrestricted.

3.3.1.5.2 virtual ReturnStatus TattE::DetectAndLocalizeInterface::detectTattoo (const Image & 562

inputImage, bool & tattooDetected, double & confidence)[pure virtual] 563

This function takes an Image as input and indicates whether a tattoo was detected in the image or not. 564

 565

Parameters: 566

in inputImage An instance of an Image struct representing a single image
out tattooDetected true if a tattoo is detected in the image; false otherwise
out confidence A real-valued measure of tattoo detection confidence on [0,1]. A value of 1 indicates

certainty that the image contains a tattoo, and a value of 0 indicates certainty that the
image does not contain a tattoo.

3.3.1.5.3 virtual ReturnStatus TattE::DetectAndLocalizeInterface::localizeTattoos(const Image & 567

inputImage, std::vector< BoundingBox > & boundingBoxes, std::vector< BodyLocation > & 568

bodyLocations)[pure virtual] 569

Tattoo Recognition Technology - Evaluation (Tatt-E)

	 	
NIST Concept and Evaluation Plan Page 18 of 28
	

This function takes an Image as input, and populates a vector of BoundingBox with the number of tattoos 570

detected on different body locations from the input image. 571

 572

Parameters: 573

in inputImage An instance of an Image struct representing a single image
out boundingBoxes For each tattoo detected in the image, the function shall create a BoundingBox,

populate it with a confidence score, the x, y, width, height of the bounding box, and
add it to the vector.

3.3.1.6 static std::shared_ptr<DetectAndLocalizeInterface> 574

TattE::DetectAndLocalizeInterface::getImplementation ()[static] 575

Factory method to return a managed pointer to the DetectAndLocalizeInterface object. 576

This function is implemented by the submitted library and must return a managed pointer to the 577

DetectAndLocalizeInterface object. 578

Note: 579

A possible implementation might be: return(std::make_shared<ImplementationD>()); 580

3.4 Identification (Class I) 581

The 1:N application proceeds in two phases, enrollment and identification. The identification phase includes 582
separate pre-search feature extraction stage, and a search stage. 583

The design reflects the following testing objectives for 1:N implementations. 584

− support distributed enrollment on multiple machines, with multiple processes running in parallel
− allow recovery after a fatal exception, and measure the number of occurrences
− allow NIST to copy enrollment data onto many machines to support parallel testing
− respect the black-box nature of biometric templates
− extend complete freedom to the provider to use arbitrary algorithms
− support measurement of duration of core function calls
− support measurement of template size

Table 8 – Procedural overview of the identification test 585

P
ha

se

Name Description Performance Metrics to be
reported by NIST

E
nr

ol
lm

en
t

E1 Initialization initializeEnrollmentSession()
Give the implementation the name of a directory where any
provider-supplied configuration data will have been placed by
NIST. This location will otherwise be empty.

E2 Parallel
Enrollment

createTemplate(TemplateRole=Enrollment)
The input will be one or more of the same tattoo image. This
function will pass the input to the implementation for conversion to
a single template. The implementation will return a template to the
calling application.

NIST's calling application will be responsible for storing all
templates as binary files. These will not be available to the
implementation during this enrollment phase.

Multiple instances of the calling application may run
simultaneously or sequentially. These may be executing on
different computers. The same tattoo will not be enrolled twice.

Statistics of the times needed
to enroll a tattoo.

Statistics of the sizes of
created templates.

The incidence of failed
template creations.

E3 Finalization finalizeEnrollment()
Permanently finalize the enrollment directory. This supports, for
example, adaptation of the image-processing functions, adaptation
of the representation, writing of a manifest, indexing, and

Size of the enrollment
database as a function of
population size N and the

Tattoo Recognition Technology - Evaluation (Tatt-E)

	 	
NIST Concept and Evaluation Plan Page 19 of 28
	

computation of statistical information over the enrollment dataset.

The implementation is permitted read-write-delete access to the
enrollment directory during this phase.

number of images.

Duration of this operation.
The time needed to execute
this function shall be reported
with the preceding enrollment
times.

P
re

-s
ea

rc
h

S1 Initialization initializeProbeTemplateSession()
Tell the implementation the location of an enrollment directory.
The implementation could look at the enrollment data.
Implementation initialize in preparation for search template
creation.

The implementation is permitted read-only access to the
enrollment directory during this phase.

Statistics of the time needed
for this operation.

Statistics of the time needed
for this operation.

S2 Template
preparation

createTemplate(TemplateRole=Identification)
For each probe, create a template from a set of input tattoo(s) or a
sketch image. This operation will generally be conducted in a
separate process invocation to step S3.

The implementation is permitted no access to the enrollment
directory during this phase.

The result of this step is a search template.

Statistics of the time needed
for this operation.

Statistics of the size of the
search template.

S
ea

rc
h

S3 Initialization initializeIdentificationSession()
Tell the implementation the location of an enrollment directory.
The implementation should read all or some of the enrolled data
into main memory, so that searches can commence.

The implementation is permitted read-only access to the
enrollment directory during this phase.

Statistics of the time needed
for this operation.

S4 Search identifyTemplate()
A template is searched against the enrollment database.

The implementation is permitted read-only access to the
enrollment directory during this phase.

Statistics of the time needed
for this operation.

Accuracy metrics - Type I + II
error rates.

Failure rates.
 586

3.4.1 TattE::IdentificationInterface Class Reference 587

3.4.1.1 Public Member Functions 588

• virtual ~IdentificationInterface () 589

• virtual ReturnStatus initializeEnrollmentSession (const std::string &configurationLocation)=0 590
This function initializes the implementation under test and sets all needed parameters. 591

• virtual ReturnStatus createTemplate (const MultiTattoo &inputTattoos, const TemplateRole 592

&templateType, TattooRep &tattooTemplate, double &quality)=0 593

This function takes a MultiTattoo and outputs a TattooRep object (essentially a template). 594

• virtual ReturnStatus finalizeEnrollment (const std::string &enrollmentDirectory, const std::string 595

&edbName, const std::string &edbManifestName)=0 596
This function will be called after all enrollment templates have been created and freezes the 597

enrollment data. After this call the enrollment dataset will be forever read-only. 598

• virtual ReturnStatus initializeProbeTemplateSession (const std::string &configurationLocation, const 599

std::string &enrollmentDirectory)=0 600

Before MultiTattoos are sent to the search template creation function, the test harness will call 601

this initialization function. 602

• virtual ReturnStatus initializeIdentificationSession (const std::string &configurationLocation, const 603
std::string &enrollmentDirectory)=0 604

This function will be called once prior to one or more calls to identifyTemplate. The function 605

might set static internal variables so that the enrollment database is available to the subsequent 606

identification searches. 607

Tattoo Recognition Technology - Evaluation (Tatt-E)

	 	
NIST Concept and Evaluation Plan Page 20 of 28
	

• virtual ReturnStatus identifyTemplate (const TattooRep &idTemplate, const uint32_t 608

candidateListLength, std::vector< Candidate > &candidateList)=0 609

This function searches an identification template against the enrollment set, and outputs a 610

vector containing candidateListLength Candidates. 611

3.4.1.2 Static Public Member Functions 612

• static std::shared_ptr< IdentificationInterface > getImplementation () 613
Factory method to return a managed pointer to the IdentificationInterface object. 614

 615

3.4.1.3 Detailed Description 616

The interface to Class I implementations. 617

The Class I submission software under test will implement this interface by subclassing this class and 618

implementing each method therein. 619

3.4.1.4 Constructor & Destructor Documentation 620

• virtual TattE::IdentificationInterface::~IdentificationInterface ()[inline], [virtual] 621

 622

3.4.1.5 Member Function Documentation 623

3.4.1.5.1 virtual ReturnStatus TattE::IdentificationInterface::initializeEnrollmentSession (const 624
std::string & configurationLocation)[pure virtual] 625

This function initializes the implementation under test and sets all needed parameters. 626

This function will be called N=1 times by the NIST application, prior to parallelizing M >= 1 calls to 627

createTemplate() via fork(). 628

Parameters: 629

in configurationLocation A read-only directory containing any developer-supplied configuration parameters or
run-time data files.

3.4.1.5.2 virtual ReturnStatus TattE::IdentificationInterface::createTemplate (const MultiTattoo & 630

inputTattoos, const TemplateRole & templateType, TattooRep & tattooTemplate, double & 631

quality)[pure virtual] 632

This function takes a MultiTattoo and outputs a TattooRep object (essentially a template). 633

For enrollment templates: If the function executes correctly (i.e. returns a successful exit status), the NIST 634

calling application will store the template. The NIST application will concatenate the templates and pass the 635

result to the enrollment finalization function. When the implementation fails to produce a template, it shall still 636
return a blank template (which can be zero bytes in length). The template will be included in the enrollment 637

database/manifest like all other enrollment templates, but is not expected to contain any feature information. 638

For identification templates: If the function returns a non-successful return status, the output template will be not 639

be used in subsequent search operations. 640

Parameters: 641

in inputTattoos An instance of a MultiTattoo structure. Implementations must alter their behavior
according to the type and number of images/type of image contained in the structure.
The input image type could be a tattoo or a sketch image. The MultiTattoo will always
contain the same type of imagery, i.e., no mixing of tattoos and sketch images will
occur. Note that implementation support for sketch images is OPTIONAL.
Implementation shall return TattE::ImageType::ImageTypeNotSupported if they
do not support sketch images. All algorithms must support tattoo images.

in templateType A value from the TemplateRole enumeration that indicates the intended usage of the
template to be generated. In this case, either an enrollment template used for gallery
enrollment or an identification template used for search.

out tattooTemplate Tattoo template object. For each tattoo detected in the MultiTattoo, the function shall

Tattoo Recognition Technology - Evaluation (Tatt-E)

	 	
NIST Concept and Evaluation Plan Page 21 of 28
	

provide the bounding box coordinates in each image. The bounding boxes shall be
captured in the TattooRep.boundingBoxes variable, which is a vector of
BoundingBox objects. If there are 4 images in the MultiTattoo vector, then the size
of boundingBoxes shall be 4. boundingBoxes[i] is associated with MultiTattoo[i].

out quality A measure of tattoo quality on [0,1] indicative of expected utility to the matcher, or
matchability. This value could measure tattoo distinctiveness/information richness,
and would be an indicator of how well the tattoo would be expected to match. A
value of 1 indicates high quality and that the tattoo would be expected to match well,
and a value of 0 indicates low quality indicative that tattoo would not would not match
well.

3.4.1.5.3 virtual ReturnStatus TattE::IdentificationInterface::finalizeEnrollment (const std::string & 642

enrollmentDirectory, const std::string & edbName, const std::string & 643

edbManifestName)[pure virtual] 644

This function will be called after all enrollment templates have been created and freezes the enrollment data. 645

After this call the enrollment dataset will be forever read-only. 646

This function allows the implementation to conduct, for example, statistical processing of the feature data, 647

indexing and data re-organization. The function may create its own data structure. It may increase or decrease 648

the size of the stored data. No output is expected from this function, except a return code. The function will 649

generally be called in a separate process after all the enrollment processes are complete. NOTE: 650

Implementations shall not move the input data. Implementations shall not point to the input data. 651

Implementations should not assume the input data would be readable after the call. Implementations must, at a 652

minimum, copy the input data or otherwise extract what is needed for search. 653

Parameters: 654

in enrollmentDirectory The top-level directory in which enrollment data was placed. This variable allows an
implementation to locate any private initialization data it elected to place in the
directory.

in edbName The name of a single file containing concatenated templates, i.e. the EDB described
in Data Structures Supporting the API. While the file will have read-write-delete
permission, the implementation should only alter the file if it preserves the necessary
content, in other files for example. The file may be opened directly. It is not necessary
to prepend a directory name. This is a NIST-provided input - implementers shall not
internally hard-code or assume any values.

in edbManifestName The name of a single file containing the EDB manifest described in Data Structures
Supporting the API . The file may be opened directly. It is not necessary to prepend a
directory name. This is a NIST-provided input - implementers shall not internally
hard-code or assume any values.

3.4.1.5.4 virtual ReturnStatus TattE::IdentificationInterface::initializeProbeTemplateSession (const 655

std::string & configurationLocation, const std::string & enrollmentDirectory)[pure virtual] 656

Before MultiTattoos are sent to the search template creation function, the test harness will call this initialization 657
function. 658

This function initializes the implementation under test and sets all needed parameters. This function will be 659

called N=1 times by the NIST application, prior to parallelizing M >= 1 calls to createTemplate() via fork(). 660

Caution: The implementation should tolerate execution of P > 1 processes on the one or more machines each of 661

which may be reading from this same enrollment directory in parallel. The implementation has read-only access 662

to its prior enrollment data. 663

Parameters: 664

in configurationLocation A read-only directory containing any developer-supplied configuration parameters or
run-time data files.

in enrollmentDirectory The read-only top-level directory in which enrollment data was placed and then
finalized by the implementation. The implementation can parameterize subsequent
template production on the basis of the enrolled dataset.

3.4.1.5.5 virtual ReturnStatus TattE::IdentificationInterface::initializeIdentificationSession (const 665

std::string & configurationLocation, const std::string & enrollmentDirectory)[pure virtual] 666

This function will be called once prior to one or more calls to identifyTemplate. The function might set static 667

Tattoo Recognition Technology - Evaluation (Tatt-E)

	 	
NIST Concept and Evaluation Plan Page 22 of 28
	

internal variables so that the enrollment database is available to the subsequent identification searches. 668

Parameters: 669

in configurationLocation A read-only directory containing any developer-supplied configuration parameters or
run-time data files.

in enrollmentDirectory The read-only top-level directory in which enrollment data was placed.

3.4.1.5.6 virtual ReturnStatus TattE::IdentificationInterface::identifyTemplate (const TattooRep & 670

idTemplate, const uint32_t candidateListLength, std::vector< Candidate > & 671

candidateList)[pure virtual] 672

This function searches an identification template against the enrollment set, and outputs a vector containing 673

candidateListLength Candidates. 674

Each candidate shall be populated by the implementation and added to candidateList. Note that candidateList 675

will be an empty vector when passed into this function. The candidates shall appear in descending order of 676

similarity score - i.e. most similar entries appear first. 677

Parameters: 678

in idTemplate A template from createTemplate(). If the value returned by that function was non-
successful, the contents of idTemplate will not be used, and this function will not be
called.

in candidateListLength The number of candidates the search should return.
out candidateList Each candidate shall be populated by the implementation. The candidates shall

appear in descending order of similarity score - i.e. most similar entries appear first.

3.4.1.5.7 static std::shared_ptr<IdentificationInterface> 679

TattE::IdentificationInterface::getImplementation ()[static] 680

 681

Factory method to return a managed pointer to the IdentificationInterface object. 682

This function is implemented by the submitted library and must return a managed pointer to the 683

IdentificationInterface object. 684

Note: 685

A possible implementation might be: return (std::make_shared<ImplementationC>()); 686

 687

 688

 689

 690

Tattoo Recognition Technology - Evaluation (Tatt-E)

	 	
NIST Concept and Evaluation Plan Page 23 of 28
	

Annex A 691

Submissions of Implementations to Tatt-E 692

A.1 Submission of implementations to NIST 693

NIST requires that all software, data and configuration files submitted by the participants be signed and 694

encrypted. Signing is done with the participant's private key, and encryption is done with the NIST public key. 695

The detailed commands for signing and encrypting are given here: https://www.nist.gov/itl/iad/image-696

group/products-and-services/encrypting-softwaredata-transmission-nist.	 697

NIST will validate all submitted materials using the participant's public key, and the authenticity of that key will 698

be verified using the key fingerprint. This fingerprint must be submitted to NIST by writing it on the signed 699
participation agreement. 700

By encrypting the submissions, we ensure privacy; by signing the submission, we ensure authenticity (the 701

software actually belongs to the submitter). NIST will reject any submission that is not signed and encrypted. 702

NIST accepts no responsibility for anything that is transmitted to NIST that is not signed and encrypted with the 703

NIST public key. 704

A.2 How to participate 705

Those wishing to participate in Tatt-E testing must do all of the following, on the schedule listed on Page 2. 706

― IMPORTANT: Follow the instructions for cryptographic protection of your software and data here - 707

https://www.nist.gov/itl/iad/image-group/products-and-services/encrypting-softwaredata-transmission-nist. 708

― Send a signed and fully completed copy of the Application to Participate in the Tattoo Recognition 709

Technology - Evaluation (Tatt-E) contained in this document. This must identify, and include signatures 710

from, the Responsible Parties as defined in the application. The properly signed Tatt-E Application to 711

Participate shall be sent to NIST as a PDF. 712

― Provide a software library that complies with the API (Application Programmer Interface) specified in this 713

document. 714

• Encrypted data and libraries below 20MB can be emailed to NIST at tatt-e@nist.gov. 715

• Encrypted data and libraries above 20MB shall be 716

EITHER 717

§ Split into sections AFTER the encryption step. Use the unix "split" commands to make 9MB 718

chunks, and then rename to include the filename extension need for passage through the 719

NIST firewall. 720

§ you% split –a 3 –d –b 9000000 libTattE_Choice_D_07.tgz.gpg 721

§ you% ls -1 x??? | xargs –iQ mv Q libTattE_Choice_D_07_Q.tgz.gpg 722

§ Email each part in a separate email. Upon receipt NIST will 723

§ nist% cat tatte_choice_D07_*.tgz.gpg > libTattE_Choice_D_07.tgz.gpg 724

OR 725

§ Made available as a file.zip.gpg or file.zip.asc download from a generic http webserver4, 726

OR 727

§ Mailed as a file.zip.gpg or file.zip.asc on CD / DVD to NIST at this address: 728

Tatt-E Test Liaison (A210)
100 Bureau Drive
A210/Tech225/Stop 8940
NIST
Gaithersburg, MD 20899-8940
USA

In cases where a courier needs a phone number,
please use NIST shipping and handling on: 301 --
975 -- 6296.

																																																																				
4 NIST will not register, or establish any kind of membership, on the provided website.

Tattoo Recognition Technology - Evaluation (Tatt-E)

	 	
NIST Concept and Evaluation Plan Page 24 of 28
	

A.3 Implementation validation 729

Registered Participants will be provided with a small validation dataset and test program via 730

https://github.com/usnistgov/tattoo shortly after the final evaluation plan is released. An announcement will be 731

made on the Tatt-E website when the validation package is available. 732

The validation test programs shall be compiled by the provider. The output of these programs shall be 733
submitted to NIST. 734

Prior to submission of the software library and validation data, the Participant must verify that their software 735

executes on the validation images and produces correct scores and templates. 736

Software submitted shall implement the Tatt-E API Specification as detailed in the body of this document. 737

Upon receipt of the software library and validation output, NIST will attempt to reproduce the same output by 738

executing the software on the validation imagery, using a NIST computer. In the event of disagreement in the 739
output, or other difficulties, the Participant will be notified. 740

 741

Tattoo Recognition Technology - Evaluation (Tatt-E)

	 	
NIST Concept and Evaluation Plan Page 25 of 28
	

Application and Agreement to Participate in the 742

Tattoo Recognition Technology – Evaluation (Tatt-E) 743

Last Updated: September 26, 2016 744

1. Who Should Participate 745

1.1. Tattoo recognition technology researchers and developers from industry, research institutions, and 746

academia are eligible to participate in the Tattoo Recognition Technology - Evaluation (Tatt-E) – 747
hereafter referred to as the “Tatt-E”. 748

1.2. Anonymous participation will not be permitted. This means that signatories to this document, Tattoo 749

Recognition Technology – Evaluation – Application to Participate (“Agreement”), acknowledge that they 750

understand that the results (see Section 6) of the test of the Submission will be published with 751

attribution to their Organization. 752

2. How to Participate 753

2.1. In order to participate in Tatt-E, an Organization must provide the information requested in Section 8 of 754

this Agreement identifying the Responsible Party and the Point of Contact. Organization must also 755

print and sign this Agreement, attach business cards from each of the signing parties, and send it to the 756

location designated in Section 8. Signatures of both the Responsible Party and the Point of Contact 757

are required. 758

2.1.1. The Responsible Party is an individual with the authority to commit the organization to the terms in 759

this Agreement. 760

2.1.2. The Point of Contact (POC) is an individual with detailed knowledge of the participating 761

Submission. 762

2.1.3. In some cases, the Responsible Party and the POC may be the same person. 763

2.2. Upon receipt of the signed application by the National Institute of Standards and Technology (NIST), 764

the organization will be classified as a “Tentative Evaluation Participant.” NIST must receive this 765
signed application with the algorithm prototypes. Algorithm prototypes shall be submitted as pre-766

compiled software libraries. They may be submitted during the submission period from December 1, 767

2016 to August 31, 2017. The application is required to be submitted with the first software library 768

submission; subsequent submissions do not require additional applications. 769

2.3. It is the Government’s desire to select all Tentative Participants as Participants. However, if demand for 770

participation exceeds the Government’s ability to properly evaluate the technology, the Government will 771

select Participants on a first come - first served basis. 772

2.4. Participant shall provide a submission (“Submission”), as specified in the document Tatt-E: Concept, 773

Evaluation Plan, and API (“Test Plan”) available at https://www.nist.gov/itl/iad/image-774

group/programsprojects/tattoo/tattoo-recognition-technology-evaluation-tatt-e. A Submission shall 775

include all executable code, validation results, configuration files, documentation, and all other files 776
required by NIST and the Participant to validate and execute the tests specified in the Test Plan. 777

2.5. The Submission need not be used in a production system or be commercially available. However, the 778

Submission must, at a minimum, be a stable implementation capable of conforming to the Test Plan 779

that NIST has published for Tatt-E. 780

2.6. The Submission must be encrypted before transmitting to NIST. Instructions for Submission can be 781

found on the Tatt-E website. Generic encryption instructions can be found in the Image Group’s 782

Encrypting Software for Transmission to NIST document available at	https://www.nist.gov/itl/iad/image-783

group/products-and-services/encrypting-softwaredata-transmission-nist. A box for the Participant’s 784

public key fingerprint is included on the Agreement. Submissions that are not signed with the public 785

key fingerprint listed on the Agreement will not be accepted. 786

2.7. Submissions must be compliant with the Test Plan, NIST test hardware, and NIST test software. 787

Tattoo Recognition Technology - Evaluation (Tatt-E)

	 	
NIST Concept and Evaluation Plan Page 26 of 28
	

Submissions must be delivered to NIST during the submission period given in paragraph 2.2 according 788

to the technical specifications given in the Test Plan. 789

3. Points of Contact 790

3.1. The Tatt-E Liaison is the U.S. Government point of contact for Tatt-E. 791

3.2. All questions should be directed to tatt-e@nist.gov, which will be received by the Tatt-E Liaison and 792

other Tatt-E personnel. 793

3.3. These questions and answers maybe provided as updates to the Tatt-E: Concept, Evaluation Plan, and 794

API at the discretion of the Tatt-E Liaison. 795

4. Release of Tatt-E 2017 Results 796

4.1. After the completion of Tatt-E testing, the U.S. Government will publish all results obtained, along with 797

the Organization’s name in Final Report(s). 798

4.2. Participant will be notified of their results via the Responsible Party and the Point of Contact provided 799

on the Agreement. 800

4.3. After the release of Tatt-E results, Participant may use the results for their own purposes. Such results 801

shall be accompanied by the following phrase: “Results show from NIST do not constitute an 802

endorsement of any particular system, product, service, or company by the U.S. Government.” Such 803

results shall also be accompanied by the Internet address (URL) of the Tatt-E website 804

(https://www.nist.gov/itl/iad/image-group/programsprojects/tattoo/tattoo-recognition-technology-805

evaluation-tatt-e). 806

5. Additional Information 807

5.1. Any data obtained during Tatt-E, as well as any documentation required by the U.S. Government from 808

the Participant (except the Submission), becomes the property of the U.S. Government. Participant will 809

not acquire a proprietary interest in the data and/or submitted documentation. The data and 810

documentation will be treated as sensitive information and only be used for the purposes of the Tatt-E 811

test. 812

5.2. Participant agrees that they not file any Tatt-E-related claim against Tatt-E sponsors, supporters, staff, 813
contractors, or agency of the U.S. Government, or otherwise seek compensation for any equipment, 814

materials, supplies, information, travel, labor and/or other Participant-provided services. 815

5.3. The U.S. Government is not bound or obligated to follow any recommendations that may be submitted 816

by the Participant. The U.S. Government, or any individual agency, is not bound, nor is it obligated, in 817

any way to give any special consideration to Participant on future contracts. 818

5.4. NIST is conducting Tatt-E pursuant to 15 U.S.C. §272(b)(8), (c)(2), and (c)(14). 819

5.5. By signing this Agreement, Participant acknowledges that they understand any test details and/or 820

modifications that are provided on the Tatt-E website supersede the information in this Agreement. 821

5.6. Participant may withdraw from Tatt-E at any time before their Submission is received by NIST, without 822

their participation and withdrawal being documented in the Final Report(s). 823

5.7. NIST will use the Participant’s Submission only for the agreed-upon Tatt-E test, and in the event errors 824

are subsequently found, to re-run prior tests and resolve those errors. 825

5.8. NIST agrees not to use the Participant’s Submission for purposes other than indicated above, without 826

Tattoo Recognition Technology - Evaluation (Tatt-E)

	 	
NIST Concept and Evaluation Plan Page 27 of 28
	

express permission by the Participant. 827

5.9. Original signed copies of the Tatt-E application are required. Original, signed copies of this application, 828

with business cards from both signing parties attached, must be mailed to the address below. These 829

must be signed paper hardcopies. Scanned documents submitted via email are not acceptable. Please 830

send an email message to tatt-e@nist.gov stating that you have sent your application. NIST will not 831

accept applications from generic email addresses (e.g. gmail.com, hotmail.com, etc.). Upon receipt of 832
your application, we will send you a confirmation email message. 833

 834

Mailing Address: 835

Tatt-E Liaison 836

National Institute of Standards and Technology 837

Information Access Division (774.03) 838

100 Bureau Drive, Mailstop 8940 839

Gaithersburg, MD 20899-8940 840

 841

Participants should complete the box below per the instructions for transmission of encrypted content 842

to NIST as defined in the Tatt-E: Concept, Evaluation Plan, and API document and available at 843

https://www.nist.gov/itl/iad/image-group/products-and-services/encrypting-softwaredata-transmission-nist. If 844
preferred, participants can fax their public key to the Tatt-E Liaison at 301-975-5287. 845

Participant's public-key
fingerprint (enter here)

NIST's public-key fingerprint TBD

 846

Tattoo Recognition Technology - Evaluation (Tatt-E)

	 	
NIST Concept and Evaluation Plan Page 28 of 28
	

Request to Participate 847

With my signature, I hereby request consideration as a Participant in the Tattoo Recognition Technology - 848

Evaluation (Tatt-E), and I am authorizing my Organization to participate in Tatt-E according to the rules and 849

limitations listed in this Agreement. 850

 851

With my signature, I also state that I have the authority to accept the terms stated in this Agreement. 852

 853

 854

 855

 ___ ______________ 856

 SIGNATURE, TITLE AND ORGANIZATION OF RESPONSIBLE PARTY DATE 857

 858

 859

 ___ 860

 PRINTED NAME AND EMAIL ADDRESS OF RESPONSIBLE PARTY 861

 862

 863

 864

 865

 ___ ______________ 866

 SIGNATURE, TITLE AND ORGANIZATION OF POINT OF CONTACT DATE 867

 868

 869

 ___ 870

 PRINTED NAME AND EMAIL ADDRESS OF POINT OF CONTACT 871

 872

 873

 874

 875

 876

 877

 878

 879

 880

 881

 __ 882

 ATTACH BUSINESS CARDS HERE FOR ALL SIGNING PARTIES 883

 884

